ΥΙΜΑΝΑ

VIMANA Maintain

Predictive Maintenance Analytics for Manufacturing

Improve your factory's asset maintenance processes and reliability with VIMANA's ready-to-use, end-to-end solution for predictive maintenance.

VIMANA Maintain provides real-time visibility to asset health, helps to predict equipment and tooling failures before they occur and avoid over maintaining assets by planning preventive maintenance schedules based on data-driven insights.

VIMANA Maintain is an Fnd-to-Fnd Solution that:

- Collects and transforms large volumes of data from multiple sources: sensors, machines, and manufacturing and IT system data.
- Provides ready-to-use analysis and visualizations based on usage, conditions, and predictive algorithms that deliver asset health intelligence to better manage and prioritize your maintenance activities.
- Automates alerts and triggers maintenance activities by integrating with your existing maintenance systems to action the data.

Realize Immediate Value with VIMANA Maintain

Boost Asset Availability and Reliability

Reduce unplanned downtime by 50% by predicting machine failures before they occur and improve overall OEE.

Reduce Maintenance Costs

Decrease labor, tooling, and spare part costs by 40% by eliminating unnecessary preventive maintenance activities with data-driven scheduling.

Improve Maintenance Workforce **Productivity and Effectiveness**

Increase maintenance staff productivity by 55% by optimizing staffing levels and scheduling, reducing MTTR and MTBF with maintenance analytics and technician productivity tools.

Optimize Maintenance Processes

Trigger maintenance activities based on analytics and automate processes and workflow from insight to execution with bi-directional systems integration.

VIMANA Maintain Capabilities

Visualize and Monitor / Customizable Real-time Dashboards

6h 24m reases Index C20			0s ~	1h 57m	1h 26m	ime Unp Os ~*	plarned 10m	Down		planned Os	6h 26m	Producii 18s	10 1h 58m	Down	time Un	planned 1h 56m	Downt		
Preserg	or ser D - Siemens 840	Liechti 1	-	-	Pastorp	-		7h 10m			6h 26m	18s	1h 58m	4h 11m	Os	1h 56m	4h 50m	-	
			urbomill	1400 c						VAR	Passarp	PGI	VER	Pasture	PET	UNIT	-	-	10m 40
Pr	oducing		Index G200 - Siemens 840 Liechti Turbomili 1400 g		Makino AS1NX			Mazak QTN			Mori NMV 5000 5-Axis Mil			Pama Speedmat3			Panel Assembly Line		
	Producing Producin		reducing	a	Producing			Downtime Unplanned			Downtime Unplanned			Downtime Unplanned					
Sh 22m 1	h 52m 1h 11m	6h 32m	0s	7m 9s	2h 49m	0s 	11m 28s	Sh 35m	1h 20r	n 3h 29m	4h 45m	53m 3	a 2h 38m	1h 48m	0s	6h 42m	0s	0s 	0s uer
Paragon Grinder Stama MC 73		TAV 455 Vacuum Furnace			Wire EDM - Fanus														
Producing		Producing		Producing			Producing												
5h 45m <mark>1</mark>	m 17s Os	7h 41m	lm 38s	3m	3h 45m	0s	05	8h 5m	0s	15s									
Pedary	NF 187	Patterny	~	140	Padatty	ner		Patienty	PRF	100									

Remote Monitoring

Ensure rapid response to maintenance issues with real-time visibility into machine status and health with pre-built, ready-to-use dashboards. No code, drag and drop capabilities enable you to build and customize dashboards for specific use cases.

KPI Metrics

Establish a baseline, monitor, and compare relevant KPIs to include the duration and frequency of downtime, faults, and warnings. Monitor remaining useful life (RUL), MTTR, MTBF, integrated with production metrics: OEE, utilization, and quality parts produced to guide performance improvement.

Analyze & Predict | Historical Reports, Machine Learning and AI-Driven Analytsis

d Devices 0 1	inga 0 Types 0	10 June 10, 2020 to Ju	ne 9, 2021										/ Edt	Aspe
By Day, Device	By Day, Shift By W	look By Week, Shift	By Month	By	Month, Shift	Overview								
					Nink a row in he	now table to vie	w its details or	d histoaran						
C Relati O D	lownload													
Device T	State	Activity	T Maria		Change	Average T	Tatal 11	Trend	Jun 8 2020	Jun 15 2020	Jun 22 2020	Jun 29 2020	Jul 6 2020 T	
Liechti Turbomili	Unplanned Downtime	Machine Tool Failure	Duratie		÷	Bm 44a	7h-43m	ma	N 7m 58s	Sm Se	7m 57a	12m 36s	0m 20s	11
Wire EDM	Unplanned Downtime	Machine Tool Failure	Durste		-	an	53.46m	Antone		1m 54e	2m	2m 21s	1m 56e	2
Index C200	Planned Downtime	Workpiece Handling	Duratio		-	35h 39m	1889h 50m		25h 54m	36h 43m	38h 15m	36h 2h	368 33m	3
Index C200	Unplanned Downtime	Waiting on Material	Duratie	6	-	13h 24m	710h 55m	~~~~~	9h 57m	12h-45m	13h 38m	14h 30m	12h 54m	14
Mazak QTN	Planned Downtime	Warkpiece Handling	Duratie		-	211.36m	1145h 23m		15h 46m	22h &m	22h 22m	21h 32m	22h 2m	2
	Page	1 of 2	•		5 rows	~			Next					
C Reload 0 0	lownload								C Relord	Download				
Stat T End				т	Duration		Ŧ		Parge	T ON	nt.	T Total	Duration	
10 Jun, 11:19:12		10 Jun, 11:47:36			25m 23s				08 - 306		204	47m (500	
10 Jun. 12:10:53		10 Jun. 12:44:40			30m 46a				306 - 211		16	9m 1	100	
10.Jun. 16:47:31		10 Jun. 19:54:03			fm 32s				2m - Sm		0		05	
10.340, 16:47:31		92 Jun, 19634003			6m 325				5m - 15m		252	29h 1	4m	
10 Jun, 23 24 27		10 Jun, 23 45:12			20m 44s				15m - 30m		507	200h 1		
11 Jun. 03.12.23		11 Jun. 03:12:44			201				30H - 1h		718	4775		
													-	

Root Cause Analysis

Track machine downtime and get insights into failures: what happened, for how long, and why with out-of-the-box, highly configurable reports that deliver intelligence to maintenance teams that helps to expedite repairs.

Fault Detection

Understand real-time faults and warnings for machines to determine where immediate action is necessary.

Analyze and Predict Continued

Machine Alarms and Warning Analysis

Proactively create maintenance activities when parameters like fault count and outage duration of critical alarms reach unacceptable levels.

Anomaly Detection

Define algorithms for generating Predictive Maintenance triggers based on sensor data to detect abnormal machine behavior before product quality degradation or asset failure.

Usage-Based Maintenance

Track usage based on product type, operation, and the historical analysis of the assets' useful life. Optimize preventive maintenance staffing and schedule triggered by the remaining useful life of the asset or component.

Condition-Based Maintenance

Monitor and analyze process condition variation over time. Identify patterns affecting machine maintenance. Then trigger early warnings of parameters beyond established thresholds to better plan maintenance activities.

Predictive Maintenance Machine Learning

Co-innovate and build custom models to predict downtime before it occurs. Predict equipment downtimes and machine faults, tooling failures, and quality risks.

Communicate & Empower Action

Productivity Tools

Manage maintenance activities, collaborate, solve problems, and build a knowledge base to improve your maintenance team's productivity.

Alerts and Notifications

Automatically and proactively notify stakeholders in real-time on asset health parameters crossing established thresholds to ignite action, control performance, and manage process change.

Ticketing System for Shop Floor Communications

Communicate and track maintenance issues and requests across the workforce for rapid, closed-loop problem-solving and informing process change.

Digital Logbook

Enables paper to digital migration of the operators' tribal knowledge and provides information to technicians on the operating condition of assets.

Dynamic Work Instructions

Use dynamic work instructions to provide maintenance or process instructions on-demand for operators/engineers/technicians to close skill gaps, reduce errors and improve workforce productivity.

Integrate & Automate

Enable end-to-end solutions from IoT data collection and maintenance analytics for insights that power manufacturing execution software.

Bi-directional Integration of Systems

Use secure APIs and connectors to integrate with other systems (MES for production planning and scheduling, ERP for inventory and financial management, EAM/CMMS for maintenance execution) to streamline workflows, minimize redundancy, and automate manufacturing and business processes. VIMANA's APIs provide secure bi-directional access to information and pull data from external systems into VIMANA and push data from VIMANA into external systems. Maintenance data is exchanged with the connectors for alerts, tickets, anomalies, faults, and metrics (MTBF, MTTR) to enable a closed-loop to activity completion.

How to Implement Predictive Maintenance In Your Factory

Align Assets to Maintenance Strategy

Classify your equipment based on asset type, time to repair, production risk, and cost implication. Then map each category **to the most effective maintenance strategy** (reactive, usage-based, condition-based, or predictive). These requirements will **define the information you need so you can trace it back to the data sources.**

IoT Data Collection and Data Transformation

First, identify the software and hardware needed to connect and collect the data. Capture all the data you need, not just data from sensors or SCADA systems. Ensure you capture greenfield and brownfield machine data and integrate with other systems i.e., CMMS, EAM, ERP, to bring context to your data. The data must be transformed and unified for downstream analysis.

Implement a Pilot: Monitor KPIs and Implement Predictive Maintenance

Use out-of-the-box dashboards, reports, and root cause analysis tools for visibility and analysis of maintenance processes to manage, control, and continuously improve asset performance and technician productivity. Monitor usage, critical failure modes, and condition parameters of assets, components, and sub-systems. Create alerts based on use to trigger preventive maintenance and conditions that provide early warnings of risk.

Trigger and Automate Maintenance Work Orders

Use Connectors to integrate existing systems to enable end-to-end processes from maintenance analytics to process execution. Categorize by the urgency level and automatically trigger work orders at condition threshold to CMMS and EAM systems.

5 Measure Results for Continuous Improvement and Scale to Unlock More Value

Measure results to include: cost reduction from labor and parts, reduced planned and unplanned downtime, improved MTTR, MTBF, and OEE for continuous improvement. Then, replicate PdM program success and scale it to your factory assets, other locations, and use cases. Build new predictive maintenance models customized to your operation and extend your value.

ΥΙΜΛΝΛ

VIMANA helps industrial businesses transform their operation and grow revenue with industrial analytics software, services, and solutions for Smart Manufacturing, asset maintenance & reliability, and IoT connected products.

Learn more at **www.govimana.com**

